Unit 4 - Electric Circuits

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{Ay}}$

IPOD \# 14
a) A lamp with a resistance of 30Ω is connected to a voltage source. The current in the circuit is 3.0 A . What is the voltage of the source?
b) The current in a circuit is 2 A . If the voltage is cut in $1 / 2$ what is the new value of the current?
c) The current in a circuit is 2 A . If the voltage is tripled and the resistance is cut in half, what is the new value of current in the circuit?

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{Ay}}$

IPOD \# 15

A classroom TV, rated at 170 W , was left on overnight and was running for a total of 24 hours that day (in school \& out of school).
a) How much energy (in kWh) was consumed?
b) How much did it cost the school? (cost per kWh - \$0.10)
c) If this TV were left on every day for a month, how much would it cost?

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{A}}$

IPOD \# 16

- A 2Ω and a 4Ω resistor are connected in series across a $12-\mathrm{V}$ battery.
- Draw the circuit
- What is the equivalent (total) resistance?
- What is the current?
- What is the potential drop (voltage) across each resistor?
- What is the power developed by each resistor?
- What is the total power developed by the circuit?

It's the Problem Of the D_{A}

PROMPT \# 17

oTwo resistors, $40-\Omega$ and $10-\Omega$, are connected in parallel across a $120-\mathrm{V}$ generator.

- Draw the circuit
- What is the equivalent (total) resistance?
- What is the current through the entire circuit?
- What is the current through each branch of the circuit?
- What is the power developed by each resistor?
- What is the total power developed by the circuit?

It's the Problem Of the $\mathrm{Day}^{\text {ay }}$

IPOD \# 18

- 2Ω resistor is connected across a $9-\mathrm{V}$ battery.
- What is the current in the circuit?
- How much power is developed by the resistor?
- The device is on an average of 6 hours per day. How much energy does it use (in $\mathrm{kWh})$ per day? Per 30 days?
- If it costs $\$ 0.12$ per kWh , how much does it cost to run for a day? For 30 days?

```
It's the Problem Of the Day
IPOD # 19
```


Comparing Series vs. Parallel Circuits

Fill in the table below to indicate the manner in which series and parallel circuits differ.

	Series Circuit	Parallel Circuit
a. Definition: The pathway by which charge loops around the circuit is characterized by \qquad pathway(s).		
b. Observation: If one light bulb goes out, the other light bulbs \qquad		
c. Observation: As the number of resistors is increased, the overall current \qquad		
d. Observation: As the number of resistors is increased, the overall resistance \qquad		
e. Calculate the equivalent (total) resistance if a 2Ω and a 4Ω resistor were connected across a $10-\mathrm{V}$ battery.		

It's the Problem Of the $\mathrm{D}_{\text {ay }}$

EXTRA PROMPT

- In this circuit, three resistors receive the same amount of current (4 amps) from a single source. Calculate the amount of voltage "dropped" by each resistor.
- In this circuit, three resistors receive the same amount of voltage (24 volts) from a single source. Calculate the amount of current "drawn" by each resistor.

