

Unit 4 – Electric Circuits

IPOD Questions

IPOD # 14

a) A lamp with a resistance of 30 Ω is connected to a voltage source. The current in the circuit is 3.0 A. What is the voltage of the source?

b) The current in a circuit is 2 A. If the voltage is cut in $\frac{1}{2}$ what is the new value of the current?

c) The current in a circuit is 2 A. If the voltage is tripled and the resistance is cut in half, what is the new value of current in the circuit?

IPOD # 15

A classroom TV, rated at 170 W, was left on overnight and was running for a total of 24 hours that day (in school & out of school).

- a) How much energy (in kWh) was consumed?
- b) How much did it cost the school? (cost per kWh \$0.10)
- c) If this TV were left on every day for a month, how much would it cost?

IPOD # 16

- \circ A 2 Ω and a 4 Ω resistor are connected in <u>series</u> across a 12-V battery.
 - Draw the circuit
 - What is the equivalent (total) resistance?
 - What is the current?
 - What is the potential drop (voltage) across each resistor?
 - What is the power developed by each resistor?
 - What is the total power developed by the circuit?

PROMPT # 17

- •Two resistors, 40- Ω and 10- Ω , are connected in parallel across a 120-V generator.
 - Draw the circuit
 - What is the equivalent (total) resistance?
 - What is the current through the entire circuit?
 - What is the current through each branch of the circuit?
 - What is the power developed by each resistor?
 - What is the total power developed by the circuit?

IPOD # 18

- \circ A 2 Ω resistor is connected across a 9-V battery.
 - What is the current in the circuit?
 - How much power is developed by the resistor?
 - The device is on an average of 6 hours per day. How much energy does it use (in kWh) per day? Per 30 days?
 - If it costs \$0.12 per kWh, how much does it cost to run for a day? For 30 days?

It's the Problem Of the Day IPOD # 19

Comparing Series vs. Parallel Circuits

Fill in the table below to indicate the manner in which series and parallel circuits differ.

		Series Circuit	Parallel Circuit
a.	Definition: The pathway by which charge		
	loops around the circuit is characterized		
	by pathway(s).		
b.	Observation: If one light bulb goes out,		
	the other light bulbs		
C.	Observation: As the number of resistors		
	is increased, the overall current		
d.	Observation: As the number of resistors		
	is increased, the overall resistance		
e.	Calculate the equivalent (total)		
	resistance if a 2Ω and a 4Ω resistor		
	were connected across a 10-V battery.		

EXTRA PROMPT

• In this circuit, three resistors receive the same amount of current (4 amps) from a single source. Calculate the amount of voltage "dropped" by each resistor.

• In this circuit, three resistors receive the same amount of voltage (24 volts) from a single source. Calculate the amount of current "drawn" by each resistor.

